- A photo ID should be out, on your desk.
- You will not be allowed to leave the room during the exam unless it is an emergency.
- Phones must be silent and put away. Any visible phone (smart watch, headphones, ipad etc.) will result in a grade F. Hands must remain in view during the exam.
- No graphing calculator.
- No credit will be given for solutions if clear work is not shown.

On all problems containing exponents, express answer using only positive exponents
CIRCLE T FOR TRUE, F FOR FALSE. (2 points each)
T F (1) $\sqrt{81}= \pm 9$ radical notation mean just the postiche root
(1) $F \quad$ (2) $\left(12 a^{7} b\right)\left(-2 a^{-2} b^{-8}\right)=\frac{-24 a^{5}}{b^{7}}$.
$T \quad E(3) \quad \sqrt{a^{2}+b^{4}}=a+b^{2}$
cannot square root terms individually
T (4) Simplifying, $\frac{x^{3}+3 x^{2}}{x^{3}+2}=\frac{x^{3}+3 x^{2}}{x^{3}+2}=\frac{3 x^{2}}{2}$
(1) F (5) Dividing, $\frac{2+3 i}{1-i}=-\frac{1}{2}+\frac{5}{2} i \quad \frac{2+3 i+i}{1-i}=\frac{2+5 i-3}{1-i^{2}}=\frac{-1+5 i}{2}$

Fill in the blanks.
(6) Simplify completly: $\left(-2 a^{6} b^{-1}\right)^{4} \frac{16 a^{24}}{b^{4}}$
(7) Simplify. $\frac{12 x^{5} y^{2}}{18 x^{-3} y^{7}} \frac{2 x^{8}}{3 y^{5}}$
(8) Factor completely: $x^{3}-64 \ldots(x-4)\left(x^{2}+4 x+16\right)$
(9) Multiply and simplify: $y^{-2 / 3}\left(y^{2 / 3}+5 y^{8 / 3}\right)-y^{0}+5 y^{6 / 3}=1+5 y^{2}$
(10)

$$
\begin{aligned}
& 16^{-3 / 4}=-\frac{1}{8} \\
& \left.\frac{1}{163 / 4}=\frac{1}{(16}\right)^{3}=\frac{1}{23}
\end{aligned}
$$

(11) Simplify:
(4 points each)
(a) $\left(\frac{2 x^{-3} y^{3 / 2}}{6 x^{2} \sqrt{y}}\right)^{-1 / 3}$
(b). $(\sqrt{x}+3 y)^{2}=(\sqrt{x}+3 y)(\sqrt{x}+3 y)$

$$
\begin{aligned}
& \left(\frac{y}{3 x^{5}}\right)^{-1 / 3}\left(\frac{3 x^{5}}{y}\right)^{1 / 3} \\
& =\frac{\sqrt[3]{3} x^{5 / 3}}{y^{1 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { factor out smallest } \\
\text { power }
\end{array} \\
& \text { power } \\
& \text { (12) Factor Completely: (5 points each) } \\
& \text { (a) } 15 x^{2}-7 x-2 \\
& (5 x+1)(3 x-2) \\
& \text { (c) } 2 x^{4}-162 \\
& 2\left(x^{4}-81\right) \\
& 2\left(x^{2}-9\right)\left(x^{2}+9\right) \\
& 2(x-3)(x+3)\left(x^{2}+9\right) \\
& \text { (b) } 20 x^{-5 / 3}+55 x^{1 / 3}+20 x^{-2 / 3} \\
& 5 x^{-5 / 3}\left(4+x^{2}+4 x^{1}\right) \\
& 5 x^{-5 / 3}\left(x^{2}+4 x+4\right) \\
& \frac{5(x+2)^{2}}{x^{5 / 3}} \\
& \begin{array}{l}
-\frac{2}{3}-\frac{5}{3} \\
-\frac{3}{3}+\frac{5}{3}-\frac{3}{3}=1
\end{array} \\
& \text { (d) } 3 x^{2} \sqrt{5 x-1}+\frac{1}{2} x^{3}(5 x-1)^{-1 / 2}(5) \\
& x^{2}(5 x-1)^{-1 / 2}\left(3(5 x-1)+\frac{5}{2} x\right) \\
& \frac{x^{2}\left(\frac{35 x}{\equiv}-3\right)}{(5 x-1)^{1 / 2}} \text { OR } \\
& \frac{x^{2}(35 x-6)}{2(5 x-1)^{1 / 2}}
\end{aligned}
$$

(13) Simplify: (6 points each)
(a) $\frac{1}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{x^{2}-1}$

$$
=\frac{1}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{(x-1)(x+1)} \quad \operatorname{LCD}(x-1)(x+1)^{2}
$$

$$
=\frac{1}{x+1} \frac{(x-1)(x+1)}{(x-1)(x+1)}-\frac{2}{(x+1)^{2}} \frac{(x-1)}{(x-1)}+\frac{3}{(x-1)(x+1)} \frac{(x+1)}{x+1}
$$

$$
=\frac{(x-1)(x+1)-2(x-1)+3(x+1)}{(x-1)(x+1)^{2}}
$$

$$
\frac{x^{2}-1:-2 x+2+3 x+3}{(x-1)(x+1)^{2}}
$$

$$
=\frac{x^{2}+x+4}{(x-1)^{2}(x+1)}
$$

$$
\begin{aligned}
& \text { (b) } \frac{\frac{1}{\sqrt{x+2}}-\frac{1}{\sqrt{x}}}{\frac{2}{\sqrt{x}}} \frac{\sqrt{x+2} \sqrt{x}}{\sqrt{x+2} \sqrt{x}} \\
& =\frac{\sqrt{x}-\sqrt{x+2}}{2 \sqrt{x+2}} \frac{\sqrt{x+2}}{\sqrt{x+2}} \\
& =\frac{\sqrt{x} \sqrt{x+2}-(x+2)}{2(x+2)}
\end{aligned}
$$

(14) Solve. Express answer in interval notation. Show all work. No credit given for improper method.
(6 points each)
(a) $|5 x-3|<4$
(b) $3+10 x-8 x^{2} \geq 0$
"distance less then"

$$
\left(3-2 x\left(x_{1}+9 x\right) \geqslant 0\right.
$$

$$
\begin{aligned}
& -4<5 x-3<4 \\
& -1<5 x<7 \\
& -\frac{1}{5}<x<\frac{7}{5} \\
& \left(-\frac{1}{5}, \frac{7}{5}\right)
\end{aligned}
$$

Consider equation

$$
\begin{array}{cc}
(3-2 x)(1+4 x)=0 \\
3-2 x=0 & 1+4 x=0 \\
3=2 x & 4 x=-1 \\
x=3 / 2 & x=-1 / 4 \\
-1+ & 1 / 4 \\
\frac{3}{-1 / 2} \\
& {[-1 / 4,3 / 2]}
\end{array}
$$

(15). Find all the solutions of the following equations (real or complex) (7 points each)
(a) $2+\sqrt{2 x-1}=x$

$$
2 x-1=x^{2}-4 x+4
$$

$$
c=x^{2}-6 x+5
$$

$$
0=(x-5)(x-1)
$$

$$
x=5 \quad x=1
$$

does not check
(c) $\frac{3}{x}-\frac{2}{x-3}=\frac{-12}{x^{2}-9}$

$$
x(x+3)(x-3)\left(\frac{3}{x}-\frac{2}{x-3}\right)=\frac{-12}{(x+3)(x-3)}(x(x+3)(x-3))
$$

$$
3(x+3)(x-3)-2 x(x+3)=-12 x
$$

$$
3\left(x^{2}-9\right)-2 x^{2}-6 x=-12 x
$$

$$
3 x^{2}-27-2 x^{2}-6 x+12 x=0
$$

$$
x^{2}+6 x-27=0
$$

$$
(x+9)(x-3)=0
$$

$$
x=-9,3{ }_{\text {dor }}
$$

does not crack
(b) $2 x-3=2 x^{2}$

$$
\begin{aligned}
0 & =2 x^{2}-2 x+3 \\
x & =\frac{2 \pm \sqrt{4-2 y}}{4} \\
& =\frac{2 \pm \sqrt{-20}}{4}=\frac{2 \pm i \sqrt{20}}{4} \\
& =\frac{2 \pm i \alpha \sqrt{5}}{4}=\frac{1 \pm i \sqrt{5}}{2}
\end{aligned}
$$

(d) $x^{4}-5 x^{2}+36=0$

Quadratic form

$$
\begin{aligned}
& u=x^{2} \\
& u^{2}-5 u+3 G=0 \\
& (u-9)(u+4)=0 \\
& u=9 \quad 4=-4 \\
& x^{2}=9 \quad x^{2}=-4 \\
& x= \pm 3 \quad x= \pm \sqrt{4} \\
& x= \pm 2 i
\end{aligned}
$$

